Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 92(5): e0006024, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38619302

RESUMO

Melioidosis is an emerging tropical infection caused by inhalation, inoculation, or ingestion of the flagellated, facultatively intracellular pathogen Burkholderia pseudomallei. The melioidosis case fatality rate is often high, and pneumonia, the most common presentation, doubles the risk of death. The alveolar macrophage is a sentinel pulmonary host defense cell, but the human alveolar macrophage in B. pseudomallei infection has never been studied. The objective of this study was to investigate the host-pathogen interaction of B. pseudomallei infection with the human alveolar macrophage and to determine the role of flagellin in modulating inflammasome-mediated pathways. We found that B. pseudomallei infects primary human alveolar macrophages but is gradually restricted in the setting of concurrent cell death. Electron microscopy revealed cytosolic bacteria undergoing division, indicating that B. pseudomallei likely escapes the alveolar macrophage phagosome and may replicate in the cytosol, where it triggers immune responses. In paired human blood monocytes, uptake and intracellular restriction of B. pseudomallei are similar to those observed in alveolar macrophages, but cell death is reduced. The alveolar macrophage cytokine response to B. pseudomallei is characterized by marked interleukin (IL)-18 secretion compared to monocytes. Both cytotoxicity and IL-18 secretion in alveolar macrophages are partially flagellin dependent. However, the proportion of IL-18 release that is driven by flagellin is greater in alveolar macrophages than in monocytes. These findings suggest differential flagellin-mediated inflammasome pathway activation in the human alveolar macrophage response to B. pseudomallei infection and expand our understanding of intracellular pathogen recognition by this unique innate immune lung cell.


Assuntos
Burkholderia pseudomallei , Flagelina , Interações Hospedeiro-Patógeno , Inflamassomos , Macrófagos Alveolares , Humanos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Inflamassomos/imunologia , Inflamassomos/metabolismo , Burkholderia pseudomallei/imunologia , Flagelina/imunologia , Flagelina/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Melioidose/imunologia , Melioidose/microbiologia , Células Cultivadas
2.
Front Med (Lausanne) ; 10: 1211265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457570

RESUMO

Introduction: Melioidosis is an often-fatal tropical infectious disease caused by the Gram-negative bacillus Burkholderia pseudomallei, but few studies have identified promising biomarker candidates to predict outcome. Methods: In 78 prospectively enrolled patients hospitalized with melioidosis, six candidate protein biomarkers, identified from the literature, were measured in plasma at enrollment. A multi-biomarker model was developed using least absolute shrinkage and selection operator (LASSO) regression, and mortality discrimination was compared to a clinical variable model by receiver operating characteristic curve analysis. Mortality prediction was confirmed in an external validation set of 191 prospectively enrolled patients hospitalized with melioidosis. Results: LASSO regression selected IL-1R2 and soluble triggering receptor on myeloid cells 1 (sTREM-1) for inclusion in the candidate biomarker model. The areas under the receiver operating characteristic curve (AUC) for mortality discrimination for the IL-1R2 + sTREM-1 model (AUC 0.81, 95% CI 0.72-0.91) as well as for an IL-1R2-only model (AUC 0.78, 95% CI 0.68-0.88) were higher than for a model based on a modified Sequential Organ Failure Assessment (SOFA) score (AUC 0.69, 95% CI 0.56-0.81, p < 0.01, p = 0.03, respectively). In the external validation set, the IL-1R2 + sTREM-1 model (AUC 0.86, 95% CI 0.81-0.92) had superior 28-day mortality discrimination compared to a modified SOFA model (AUC 0.80, 95% CI 0.74-0.86, p < 0.01) and was similar to a model containing IL-1R2 alone (AUC 0.82, 95% CI 0.76-0.88, p = 0.33). Conclusion: Biomarker models containing IL-1R2 had improved 28-day mortality prediction compared to clinical variable models in melioidosis and may be targets for future, rapid test development.

3.
Clin Infect Dis ; 72(5): 821-828, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32034914

RESUMO

BACKGROUND: Melioidosis, infection caused by Burkholderia pseudomallei, is a common cause of sepsis with high associated mortality in Southeast Asia. Identification of patients at high likelihood of clinical deterioration is important for guiding decisions about resource allocation and management. We sought to develop a biomarker-based model for 28-day mortality prediction in melioidosis. METHODS: In a derivation set (N = 113) of prospectively enrolled, hospitalized Thai patients with melioidosis, we measured concentrations of interferon-γ, interleukin-1ß, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-ɑ, granulocyte-colony stimulating factor, and interleukin-17A. We used least absolute shrinkage and selection operator (LASSO) regression to identify a subset of predictive biomarkers and performed logistic regression and receiver operating characteristic curve analysis to evaluate biomarker-based prediction of 28-day mortality compared with clinical variables. We repeated select analyses in an internal validation set (N = 78) and in a prospectively enrolled external validation set (N = 161) of hospitalized adults with melioidosis. RESULTS: All 8 cytokines were positively associated with 28-day mortality. Of these, interleukin-6 and interleukin-8 were selected by LASSO regression. A model consisting of interleukin-6, interleukin-8, and clinical variables significantly improved 28-day mortality prediction over a model of only clinical variables [AUC (95% confidence interval [CI]): 0.86 (.79-.92) vs 0.78 (.69-.87); P = .01]. In both the internal validation set (0.91 [0.84-0.97]) and the external validation set (0.81 [0.74-0.88]), the combined model including biomarkers significantly improved 28-day mortality prediction over a model limited to clinical variables. CONCLUSIONS: A 2-biomarker model augments clinical prediction of 28-day mortality in melioidosis.


Assuntos
Citocinas/sangue , Melioidose , Adulto , Biomarcadores/sangue , Burkholderia pseudomallei , Humanos , Melioidose/diagnóstico , Melioidose/mortalidade , Tailândia
4.
J Control Release ; 330: 284-292, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33221351

RESUMO

Pulmonary melioidosis is a bacterial disease with high morbidity and a mortality rate that can be as high as 40% in resource-poor regions of South Asia. This disease burden is linked to the pathogen's intrinsic antibiotic resistance and protected intracellular localization in alveolar macrophages. Current treatment regimens require several antibiotics with multi-month oral and intravenous administrations that are difficult to implement in under-resourced settings. Herein, we report that a macrophage-targeted polyciprofloxacin prodrug acts as a surprisingly effective pre-exposure prophylactic in highly lethal murine models of aerosolized human pulmonary melioidosis. A single dose of the polymeric prodrug maintained high lung drug levels and targeted an intracellular depot of ciprofloxacin to the alveolar macrophage compartment that was sustained over a period of 7 days above minimal inhibitory concentrations. This intracellular pharmacokinetic profile provided complete pre-exposure protection in a BSL-3 model with an aerosolized clinical isolate of Burkholderia pseudomallei from Thailand. This total protection was achieved despite the bacteria's relative resistance to ciprofloxacin and where an equivalent dose of pulmonary-administered ciprofloxacin was ineffective. For the first time, we demonstrate that targeting the intracellular macrophage compartment with extended antibiotic dosing can achieve pre-exposure prophylaxis in a model of pulmonary melioidosis. This fully synthetic and modular therapeutic platform could be an important therapeutic approach with new or re-purposed antibiotics for melioidosis prevention and treatment, especially as portable inhalation devices in high-risk, resource-poor settings.


Assuntos
Melioidose , Pró-Fármacos , Animais , Humanos , Pulmão , Macrófagos Alveolares , Melioidose/tratamento farmacológico , Melioidose/prevenção & controle , Camundongos , Polímeros
5.
PLoS Negl Trop Dis ; 14(8): e0008495, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32764765

RESUMO

Melioidosis is an often-severe tropical infection caused by Burkholderia pseudomallei (Bp) with high associated morbidity and mortality. Burkholderia thailandensis (Bt) is a closely related surrogate that does not require BSL-3 conditions for study. Lactoferrin is an iron-binding glycoprotein that can modulate the innate inflammatory response. Here we investigated the impact of lactoferrin on the host immune response in melioidosis. Lactoferrin concentrations were measured in plasma from patients with melioidosis and following ex vivo stimulation of blood from healthy individuals. Bt growth was quantified in liquid media in the presence of purified and recombinant human lactoferrin. Differentiated THP-1 cells and human blood monocytes were infected with Bt in the presence of purified and recombinant human lactoferrin, and bacterial intracellular replication and cytokine responses (tumor necrosis factor-α (TNF-α), interleukin-1ß and interferon-γ) were measured. In a cohort of 49 melioidosis patients, non-survivors to 28 days had significantly higher plasma lactoferrin concentrations compared to survivors (median (interquartile range (IQR)): 326 ng/ml (230-748) vs 144 ng/ml (99-277), p<0.001). In blood stimulated with heat-killed Bp, plasma lactoferrin concentration significantly increased compared to unstimulated blood (median (IQR): 424 ng/ml (349-479) vs 130 ng/ml (91-214), respectively; p<0.001). Neither purified nor recombinant human lactoferrin impaired growth of Bt in media. Lactoferrin significantly increased TNF-α production by differentiated THP-1 cells and blood monocytes after Bt infection. This phenotype was largely abrogated when Toll-like receptor 4 (TLR4) was blocked with a monoclonal antibody. In sum, lactoferrin is produced by blood cells after exposure to Bp and lactoferrin concentrations are higher in 28-day survivors in melioidosis. Lactoferrin induces proinflammatory cytokine production after Bt infection that may be TLR4 dependent.


Assuntos
Infecções por Burkholderia/metabolismo , Infecções por Burkholderia/microbiologia , Burkholderia , Lactoferrina/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Burkholderia pseudomallei , Células Cultivadas , Humanos , Melioidose/metabolismo , Monócitos , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética
6.
BMC Med ; 18(1): 159, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32605575

RESUMO

BACKGROUND: Few studies of biomarkers as predictors of outcome in infection have been performed in tropical, low- and middle-income countries where the burden of sepsis is highest. We evaluated whether selected biomarkers could predict 28-day mortality in infected patients in rural Thailand. METHODS: Four thousand nine hundred eighty-nine adult patients admitted with suspected infection to a referral hospital in northeast Thailand were prospectively enrolled within 24 h of admission. In a secondary analysis of 760 patients, interleukin-8 (IL-8), soluble tumor necrosis factor receptor 1 (sTNFR-1), angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), and soluble triggering receptor expressed by myeloid cells 1 (sTREM-1) were measured in the plasma. Association with 28-day mortality was evaluated using regression; a parsimonious biomarker model was selected using the least absolute shrinkage and selection operator (LASSO) method. Discrimination of mortality was assessed by receiver operating characteristic curve analysis and verified by multiple methods. RESULTS: IL-8, sTNFR-1, Ang-2, and sTREM-1 concentrations were strongly associated with death. LASSO identified a three-biomarker model of sTREM-1, Ang-2, and IL-8, but sTREM-1 alone provided comparable mortality discrimination (p = 0.07). sTREM-1 alone was comparable to a model of clinical variables (area under receiver operating characteristic curve [AUC] 0.81, 95% confidence interval [CI] 0.77-0.85 vs AUC 0.79, 95% CI 0.74-0.84; p = 0.43). The combination of sTREM-1 and clinical variables yielded greater mortality discrimination than clinical variables alone (AUC 0.83, 95% CI 0.79-0.87; p = 0.004). CONCLUSIONS: sTREM-1 predicts mortality from infection in a tropical, middle-income country comparably to a model derived from clinical variables and, when combined with clinical variables, can further augment mortality prediction. TRIAL REGISTRATION: The Ubon-sepsis study was registered on ClinicalTrials.gov ( NCT02217592 ), 2014.


Assuntos
Biomarcadores/sangue , Infecção Hospitalar/diagnóstico , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mortalidade , Clima Tropical
7.
PLoS Negl Trop Dis ; 13(5): e0007354, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31067234

RESUMO

BACKGROUND: Toll-like receptors (TLRs) are sentinel receptors of the innate immune system. TLR4 detects bacterial lipopolysaccharide (LPS) and TLR5 detects bacterial flagellin. A common human nonsense polymorphism, TLR5:c.1174C>T, results in a non-functional TLR5 protein. Individuals carrying this variant have decreased mortality from melioidosis, infection caused by the flagellated Gram-negative bacterium Burkholderia pseudomallei. Although impaired flagellin-dependent signaling in carriers of TLR5:c.1174C>T is well established, this study tested the hypothesis that a functional effect of TLR5:c.1174C>T is flagellin-independent and involves LPS-TLR4 pathways. METHODOLOGY/PRINCIPAL FINDINGS: Whole blood from two independent cohorts of individuals genotyped at TLR5:c.1174C>T was stimulated with wild type or aflagellated B. pseudomallei or purified bacterial motifs followed by plasma cytokine measurements. Blood from individuals carrying the TLR5:c.1174C>T variant produced less IL-6 and IL-10 in response to an aflagellated B. pseudomallei mutant and less IL-8 in response to purified B. pseudomallei LPS than blood from individuals without the variant. TLR5 expression in THP1 cells was silenced using siRNA; these cells were stimulated with LPS before cytokine levels in cell supernatants were quantified by ELISA. In these cells following LPS stimulation, silencing of TLR5 with siRNA reduced both TNF-α and IL-8 levels. These effects were not explained by differences in TLR4 mRNA expression or NF-κB or IRF activation. CONCLUSIONS/SIGNIFICANCE: The effects of the common nonsense TLR5:c.1174C>T polymorphism on the host inflammatory response to B. pseudomallei may not be restricted to flagellin-driven pathways. Moreover, TLR5 may modulate TLR4-dependent cytokine production. While these results may have broader implications for the role of TLR5 in the innate immune response in melioidosis and other conditions, further studies of the mechanisms underlying these observations are required.


Assuntos
Burkholderia pseudomallei/imunologia , Flagelina/imunologia , Melioidose/genética , Melioidose/imunologia , Polimorfismo Genético , Receptor 5 Toll-Like/genética , Adolescente , Adulto , Idoso , Burkholderia pseudomallei/genética , Códon sem Sentido , Estudos de Coortes , Feminino , Flagelina/genética , Humanos , Imunidade Inata , Interleucina-10/genética , Interleucina-10/imunologia , Masculino , Melioidose/microbiologia , Pessoa de Meia-Idade , NF-kappa B/genética , NF-kappa B/imunologia , Mutação Puntual , Receptor 5 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Adulto Jovem
8.
Emerg Microbes Infect ; 8(1): 282-290, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30866782

RESUMO

Melioidosis, an infectious disease caused by the bacterium Burkholderia pseudomallei, is a common cause of sepsis in Southeast Asia. We investigated whether novel TLR1 coding variants are associated with outcome in Thai patients with melioidosis. We performed exonic sequencing on a discovery set of patients with extreme phenotypes (mild vs. severe) of bacteremic melioidosis. We analysed the association of missense variants in TLR1 with severe melioidosis in a by-gene analysis. We then genotyped key variants and tested the association with death in two additional sets of melioidosis patients. Using a by-gene analysis, TLR1 was associated with severe bacteremic melioidosis (P = 0.016). One of the eight TLR1 variants identified, rs76600635, a common variant in East Asians, was associated with in-hospital mortality in a replication set of melioidosis patients (adjusted odds ratio 1.71, 95% CI 1.01-2.88, P = 0.04.) In a validation set of patients, the point estimate of effect of the association of rs76600635 with 28-day mortality was similar but not statistically significant (adjusted odds ratio 1.81, 95% CI 0.96-3.44, P = 0.07). Restricting the validation set analysis to patients recruited in a comparable fashion to the discovery and replication sets, rs76600635 was significantly associated with 28-day mortality (adjusted odds ratio 3.88, 95% CI 1.43-10.56, P = 0.01). Exonic sequencing identifies TLR1 as a gene associated with a severe phenotype of bacteremic melioidosis. The TLR1 variant rs76600635, common in East Asian populations, may be associated with poor outcomes from melioidosis. This variant has not been previously associated with outcomes in sepsis and requires further study.


Assuntos
Bacteriemia/mortalidade , Melioidose/mortalidade , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Receptor 1 Toll-Like/genética , Adulto , Bacteriemia/genética , Análise Mutacional de DNA , Éxons , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Melioidose/genética , Pessoa de Meia-Idade , Tailândia
9.
J Immunol ; 198(2): 862-872, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28003382

RESUMO

Macrophages have important functional roles in regulating the timely promotion and resolution of inflammation. Although many of the intracellular signaling pathways involved in the proinflammatory responses of macrophages are well characterized, the components that regulate macrophage reparative properties are less well understood. We identified the MEK1/2 pathway as a key regulator of macrophage reparative properties. Pharmacological inhibition of the MEK1/2 pathway by a MEK1/2 inhibitor (MEKi) significantly increased expression of IL-4/IL-13 (M2)-responsive genes in murine bone marrow-derived and alveolar macrophages. Deletion of the MEK1 gene using LysMCre+/+Mek1fl/fl macrophages as an alternate approach yielded similar results. MEKi enhanced STAT6 phosphorylation, and MEKi-induced changes in M2 polarization were dependent on STAT6. In addition, MEKi treatment significantly increased murine and human macrophage efferocytosis of apoptotic cells, independent of macrophage polarization and STAT6. These phenotypes were associated with increased gene and protein expression of Mertk, Tyro3, and Abca1, three proteins that promote macrophage efferocytosis. We also studied the effects of MEKi on in vivo macrophage efferocytosis and polarization. MEKi-treated mice had increased efferocytosis of apoptotic polymorphonuclear leukocytes instilled into the peritoneum. Furthermore, administration of MEKi after LPS-induced lung injury led to improved recovery of weight, fewer neutrophils in the alveolar compartment, and greater macrophage M2 polarization. Collectively, these results show that MEK1/2 inhibition is capable of promoting the reparative properties of murine and human macrophages. These studies suggest that the MEK1/2 pathway may be a therapeutic target to promote the resolution of inflammation via modulation of macrophage functions.


Assuntos
MAP Quinase Quinase 1/imunologia , MAP Quinase Quinase 2/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Transdução de Sinais/imunologia , Animais , Western Blotting , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Macrófagos/enzimologia , Camundongos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...